
Compiler Optimization Case

Sebastian Buchwald Edgar Jakumeit

March 27, 2011

1 Introduction

An optimizing compiler consists of a frontend parsing a textual programming
language into an intermediate representation (IR), a middle end performing
optimizations on the IR, and a backend lowering the IR to a target represen-
tation (TR) built of operations supported by the target hardware. In modern
compiler construction graph based intermediate representations are employed.
Optimization and lowering tasks can then be implemented with graph transfor-
mation rules.

The participating tools are required to solve the following challenges:

Local optimizations replace an IR pattern of limited size and only local graph
context by another semantically equivalent IR pattern which is cheaper
to execute or which enables further optimizations. For instance, given
the associativity of the '+'-operator, the transformation (x + 1) + 2 ⇒
x+ (1 + 2)⇒ x+ 3 can be performed by local optimizations.

Instruction selection transforms the intermediate representation into the tar-
get representation. While both representations are similar in structure, the
TR operations are often equivalent to a small pattern of IR operations,
i.e. one TR operation covers an IR pattern (it may be equivalent to sev-
eral di�erent IR patterns). Thus instruction selection can be approached
by applying rules rewriting IR patterns to TR nodes, until the whole IR
graph was covered and transformed to a least cost TR graph.

The primary purpose of these challenges is to evaluate the participating tools
regarding performance. The ability to apply rules in parallel should be bene�cial
for the instruction selection task due to the locality of the rules and a high
degree of independence in between the rules. It could be advantageous for the
optimization task, too, but intelligent traversal strategies might have a higher
impact there. Secondary aims are fostering tool interoperability regarding the
GXL standard format and testing the ability to visualize medium sized real
world graphs.

2 A Graph-Based Intermediate Representation

The intermediate representation to be used is a simpli�ed version of the graph-
based intermediate representation Firm

1. Within Firm, nodes represent basic

1www.libfirm.org

1

www.libfirm.org

operations, e.g. loading a value from an address or adding two values. Edges
indicates dependencies between nodes, e.g. an Add depends on its two operands.
Each operation is located within a Block2. For the represented program all nodes
within the same Block are executed together, i.e. if one node within a Block is
executed then all nodes within the Block must be executed.

Figure 1 shows a program graph for the following C-function:

i n t MinPlus (i n t x , i n t y)
{

i n t min ;

i f (x < y) {
min = x ;

}
e l s e {

min = y ;
}

re turn min + 1 ;
}

The program execution starts at Start, which also produces the initial memory
state and the given Arguments. Start and the Arguments belong to the special
StartBlock. The Cmp compares the arguments and Cond represents a condi-
tional jump depending on the result of the comparison. After executing the
Jmp of the then- or else-Block the program execution continues at Block $0.
The Phi originates form the static single assignment form [1] which is required
for a concise graph-based IR. It chooses one of its operands depending on the
previously executed block. For instance, the Phi selects Argument 2 if the Cond
was evaluated to False and Argument 1 if the Cond was evaluated to True. The
Return returns the value selected by the Phi. The end of the program execution
is represented by the special EndBlock which by convention contains exactly one
End.

Each node has ordered outgoing edges, which is indicated by the position
attribute of the edges. Edges representing the containment to a Block have
position −1; the operands start at position 0. There are several edge types:

Data�ow Models the �ow of data from an operation to another one.

Memory Memory edges are used to ensure an order for memory operations.

Control�ow Models the program execution.

True Control �ow if a condition jump is evaluated to true.

False Control �ow if a condition jump is evaluated to false.

Keep Needed to model in�nite loops, see description of End.

The direction of the edges is reversed to the direction of the �ow (it follows the
dependencies). For instance, start has only incoming edges.

The following list describes all node types:

2also known as basic block

2

Figure 1: Program graph of a minimum plus one function, with block contain-
ment visualized as containment left, and the plain graph right.

3

Block A basic block. All outgoing edges point to possible execution prede-
cessors. The incoming Data�ow edges de�ne the contained operations.
In the �gures the contained operations are shown as containment in the
Block node for easier readability, the right sub�gure of Figure 1 displays
the plain graph structure underneath.

StartBlock The start block.

Start The starting point of the program. Produces initial control �ow and
memory state.

Argument The arguments of the program. The attribute position indicates
which argument is represented.

EndBlock The end block.

End Nodes which are not reachable by the End can be removed from the graph.
Since in�nite loops may never reach the EndBlock, Keep edges are inserted
to prevent the removal of such a loop.

Phi A Phi selects the operand of the previously executed Block from the operands
available. This implies that the number of operands of a Phi node must
be equivalent the the number of control �ow predecessors of the Block it is
contained in. Furthermore the position attributes of the operand edges of
the Phi node must be equal to the position attributes of the corresponding
control �ow edges of the containing Block node.

Jmp∗ A jump to a Block.

Cond∗ A conditional jump. The operand must be a Cmp or another node
producing a value ∈ {0, 1}, e.g. a Const.

Return Returns a value. The �rst operand must be the current memory state
and the second operand the return value.

Const∗ A constant value. The value of the constant of integer type is presented
by the value attribute. A Const is always located in the StartBlock.

SymConst∗ A symbolic constant. A SymConst is used to represent the address
of some global data, e.g. arrays. The symbol attribute of string type
represents the name of the global data. A SymConst is always located in
the StartBlock.

Load∗ Load an value from a given address. The �rst operand is the current
memory state and the second operand is the address. The Load produces
a new memory state. The volatile attribute indicates whether the load can
or can not get optimized away. For instance, two consecutive volatile Loads
from the same address can not be merged. This is necessary because some
other thread may change the value at this address during the program
execution.

Store∗ Stores a value to a given address. The �rst operand is the current
memory state, the second operand is the address and the third operand
the value that should be stored. Similar to the Load, a Store also has a
volatile attribute.

4

Sync Synchronize multiple memory operations. The Sync is used to represent
that some memory operations are not in any particular order. For in-
stance, Loads of di�erent array elements a[i], a[i+1] may not be ordered.

Not∗ Bitwise complement.

Binary∗ An operation with two operands. Each binary operation has two
boolean attributes: associative and commutative. The following binary
operations are supported:

• Add∗

• Sub∗

• Mul∗

• Div∗

• Mod∗

• Shl∗�shift left, �ll up with zero

• Shr∗�shift right, �ll up with zero

• Shrs∗�shift right signed, �ll up with sign bit (1 if negative, 0 other-
wise)

• (bitwise) And∗

• (bitwise) Or∗

• (bitwise) Eor∗�exclusive or

• Cmp∗ Compare two values.
The relation attributes indicates the checked relation, i.e. one of
FALSE, GREATER, EQUAL, GREATER_EQUAL, LESS, NOT_EQUAL,
LESS_EQUAL, and TRUE.

3 Getting started: Veri�er

To get started you can create some rules that checks your graph for validity.
This may include the following checks:

• there is only one Start

• there is only one End

• a Data�ow edge to a Block always has position −1

• Constants are only located in the StartBlock

• A Phi has as many operand Data�ow edges as the Block it is located in
Control�ow predecessors.

• The operand Data�ow edges of a Phi are linked to the Control�ow edges of
the Block it is contained in via the position attribute in those edges - are
they ascending from 0 on without gaps?

The veri�er is not part of the challenge, but it might be helpful in checking the
correctness of your solution of the following tasks.

5

4 Task 1: Local Optimizations

The �rst task is to optimize programs using local optimizations, i.e. rules with
a pattern of �xed size and only local graph context.

4.1 Constant Folding

Constant folding means to evaluate an operation with only constants operands,
e.g. to transform 1 + 2 into 3. Constand folding of data �ow operations is
straight-forward task, a good deal more complicated is constant folding in-
cluding control �ow, replacing conditional jumps with constant operands by
unconditional jumps.

To ease the challenge for participants not knowledgable in compiler con-
struction we show how to carry out constant folding including control �ow on
an example graph. The example graph is the minimum plus one graph intro-
duced in the previous section, but with the arguments replaced by constants; it
is shown in the follwing section, Figure 5, left side. Folding starts with the Cmp
node comparing two constant values: it is folded to a constant giving the result
of the comparison, which is 1 denoting true in our case; the result is displayed in
Figure 2, left side. Then the Cond node depending only on the constant created
in the previous step is folded, i.e. replaced by an unconditional Jmp; the result
is shown in Figure 2, right side. This leaves the false Block unreachable, it gets
removed; when a block is removed, the Phis in the blocks succeeding it must
get adapted. To be more exact: the operands which resulted from executing
that block must get removed. Additionally the position attributes of the control
�ow edges and of the data �ow edges of the Phi operands must be decremented
from the correct position on. The result is shown in Figure 3, left side. Now
the empty blocks denoting a useless jump cascade can get removed and the Phi
folded; a Phi with only one dependency edge is super�uous as there is no deci-
sion to be taken at runtime any more, it can get replaced by relinking its users
directly to its input value. Removing the empty blocks �rst and folding the Phi
afterwards (we could reverse this or do it in parallel), we reach via Figure 3 the
situation given in Figure 4, left side. Folding the Add node now only depend-
ing on two constants, we reach the end result of the optimization, a function
returning the constant value 1.

To make the tools comparable, there will be a test suite of multiple programs
(in GXL format) that can be optimized by local optimizations.

4.2 Extension

You can challenge the other participants by adding your own test programs to
the tests suite. The only requirement is that the corresponding optimization is
a local optimization. This o�ers the opportunity to highlight strong points of
your tool.

6

Figure 2: Program graph of the minimum plus one function, left: 2. after Cmp
folding, right: 3. after Cond folding.

7

Figure 3: Program graph of the minimum plus one function, left: 4. after un-
reachable block and Phi operand removal, right: 5. after empty block removal.

8

Figure 4: Program graph of the minimum plus one function, left: 6. after Phi
folding, right: 7. after Add folding.

9

5 Task 2: Instruction Selection

The second task is to perform instruction selection, i.e. to transform the inter-
mediate representation into a target-speci�c representation. We assume a very
simple target architecture resulting in a TR which is structurally nearly iden-
tical to the IR, with the sole exception of �immediates� which may be encoded
directly in the target instructions (i.e. we assume some kind of simple RISC ma-
chine; the more interesting case of a CISC machine, where target operations can
contain a memory access, giving rise to non-trivial IR patterns to be covered, is
too complicated for this contest.)

All operations that must be transformed by instruction selection are marked
with a '∗'. For each operation Op there is a target-speci�c operation TargetOp.
For each binary operation Op there is in addition a target-speci�c operation
TargetOpI, which has an additional attribute value that holds the value of a
constant; it represents an IR pattern Op(x,Const). (For non-commutative binary
operations the Const must be at the outgoing edge with position 1.) For Load
and Store there are in addition target-speci�c operations LoadI and StoreI with
an additional attribute symbol which holds a symbolic constant; they represent
IR patterns Load(x,SymConst) and Store(x,SymConst).

The goal of this task is to perform optimal instruction selection with respect
to the number of resulting operations. This means an operation with immediate
is always better than the same operation without immediate. Figure 5 shows the
minimum plus one function on constant values not optimized away by constant
folding, before and after instruction selection. Performance hint: the setup
given allows to process all operations with immediate and then all operations
without immediate in parallel.

6 Evaluation criteria

For each task tackled the authors should give a short overview of their solu-
tion. Furthermore, the solution should contain some statements regarding the
following criteria:

Completeness Which programs of the test suite are covered by the solution.

Performance How long does your solution need to optimize/transform the
programs. How much memory does your solution need?

Conciseness How many rules/lines/words/graphical elements do you need?

Purity Is your solution entirely made of graph transformations? Do you need
imperative/functional/logical glue code? What is the relationship between
the graph transformation and the conventional programming part?

10

Figure 5: Program graph before and after instruction selection.

11

References

[1] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. E�ciently computing static single assignment form and
the control dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451�
490, 1991.

12

	Introduction
	A Graph-Based Intermediate Representation
	Getting started: Verifier
	Task 1: Local Optimizations
	Constant Folding
	Extension

	Task 2: Instruction Selection
	Evaluation criteria

